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Abstract-This paper examines the heat transfer between two sliding solids in contact over a fixed region 
with internal heat sources generated in the solids. Asymptotic solutions for the heat flux distribution along 
the contact and temperature fields in the solids are derived for large Peclet numbers. Comparisons with 
numerical solutions indicate that the asymptotic analysis is valid for Peclet numbers higher than 10. 
Simplified expressions which are suitable for practical engineering applications, for the temperature dis- 
tribution beyond the contact and the characterization of the thermal penetration into the solids, are also 

derived. 

1. INTRODUCTION 2. MATHEMATICAL FORMULATION 

THE CONDUCTION of heat between bodies in perfect 
contact has been extensively studied since it finds 
applications in many industrial processes, and forms a 
building block for the examination of thermal systems 
with imperfect contacts. Schneider et al. [l] and 
Sadhal [2, 31 studied the steady-state and transient 
thermal variations in stationary solids which were in 
contact over a finite region. Jaeger [4] discussed the 
Green’s functions for the transient and steady-state 
temperature fields in a stationary semi-infinite solid 

with heat sources moving at a constant speed on the 
surface of the solid. This formulation provided a basis 
for numerical studies of heat transfer between two 
moving bodies. The resultant temperature fields in 
them were later studied by Allen [5], Cameron et al. 

[6] and Symm [7] and, more recently, by Blahey and 

Schneider [8]. 

Consider two semi-infinite solids moving in the 

same direction and being in perfect contact over a 
finite region. It is assumed that the solid surfaces 
are perfectly insulated outside the contact region, as 
illustrated in Fig. 1. Consider further that heat energy 
is generated in one of the solids, say, body 2. within 
the contact region. This paper examines the two- 
dimensional steady-state behaviour of such a thermal 
system. The situation where heat source is present in 
body 1 or in both bodies is a trivial extension of 
the solutions derived in this paper and will not be 
elaborated here. 

Based on a Green’s function formulation, the tem- 

perature change in body i, T;(x, y), due to the heat 
flux across the contact region is given by [4, 91 

In the context of strip rolling, Yuen has recently 
derived asymptotic solutions for the heat transfer 
between two moving semi-infinite solids in contact 
over a finite fixed region. Both the heat partition to 
each body and the resultant temperature fields have 
been examined [9-l 11. The cases where the bulk tem- 
peratures of the solids are different [9, lo] and where 
heat energy is generated along the contact region [ 1 l] 

have been considered separately. In strip rolling, the 
former relates to the hot rolling condition for which 
the rolls and the workpiece have very different tem- 
peratures, and the latter relates to the frictional energy 
generated along the contact region due to the rolls 
and the workpiece moving at different speeds. Yet 
another area of interest involves heat energy being 
generated in one or both solids within the contact 
region, which is the subject of investigation in this 
paper. This heat energy is caused, in strip rolling, 
by the plastic deformation in the workpiece and the 
elastic hysteresis in the rolls ; while in other appli- 
cations, it could be induced by internal heat sources 
such as induction heating. 

~&{P,[(x-x’)*+y2]“2}dx’ (1) 
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FIG. 1. Thermal system under study : two moving bodies in 
contact over a fixed region. 
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NOMENCLATURE 

A form factor T(.u, y) temperature change (from the bulk 

.f‘(x) ?T, /+,I \ =,I temperature of the body prior to contact) 
,fi(.u), f’,(x) terms defined in equation (14) T, bulk temperature difference between 
I‘,, I,,, I,. I,,, I,, integrals defined in body 2 and body I 

equations (A.l), (B.l), (C.l), (C.3) and Td(x, y) temperature change (from the bulk 
(C.5), respectively temperature of the body prior to contact) 

I,, I, integrals defined in equations (26) and due to the internal heat source in the 
(28), respectively body 

I,[f’(x)] integral defined in equation (IO) T, maximum temperature change in body i 

J,. integral defined in equation (A.5) T,,,(y) maximum temperature change reached at 
k thermal conductivity a depth y (non-dimensionalized) 

k, ratio of the thermal conductivity of below the body surface 
body 2 to that of body 1 r, maximum temperature change in the 

1 contact length body 

P scalar defined in equation (B.l) r, speed of body i 

P Peclet number, 211/(2c() (x, y) Cartesian coordinate pair, non- 

P, ratio of the Peclet number of body 2 to dimensionalized with the contact 
that of body 1 length, 1 

q(x, y) non-dimensionalized rate of internal (x”, y”) Cartesian coordinate pair 
heat generation per unit volume &I? x-coordinate at which T,,,(y) is reached. 

q”(x’, y”) rate of internal heat generation 
per unit volume 

40 non-dimensionalized rate of (uniform) Greek symbols 
internal heat generation per unit thermal diffusivity 
volume ;oJI t erms defined in equations (17) and 

4:” average heat flux distribution (per unit (22) 
area) over the contact region El> E2 small terms defined in Section 3.1 

(qR) , , Cd) *, (&I 3 average heat flux ‘IL P,Y2/2 
distribution (per unit area) over the factor defined in equation (A.2) 
contact for the friction effect, bulk L,, (‘, , t2, 5; terms defined after equation 
temperature difference effect and (31) 
deformation effect, respectively (p, 0) cylindrical coordinate pair defined after 

4: rate of deformation heat generated per equation (34). 
unit volume under the contact region 
for body 2 

4: rate of frictional heat generated per unit Subscripts (unless defined above) 
area along the contact region 1 body 1 

S, , , S, series defined in equations 2 body 2 
(41)-(44), and (47), respectively i body i. 

where 

P, = ivil/c(,, x = x0/l, and y = y”Il. 

Here, subscript i = 1,2 and the upper and lower signs 
in equation (1) refer to bodies 1 and 2, respectively ; 
(x0, y”) are the Cartesian coordinates with the origin 
located at the leading edge of the contact as shown in 
Fig. 1 ; I is the contact length ; Ti(x, y) the temperature 
change of body i at the non-dimensionalized coor- 
dinates (x, y) due to the heat flux at the contact region ; 
vt the speed of body i (moving in the x0 direction) ; LX, 
and Pi are the thermal diffusivity and Peclet number 
of body i, respectively; and K,( ) is the modified 
Bessel function of the second kind. 

The overall temperature change of body 1 is given 

by T,(x, y) while that for body 2 is given by the 
sum of T,(x, y) and Td(x, y), the latter of which is 
contributed from the internal heat generation in body 
2 and can be deduced by integrating the Green’s func- 
tion of a moving line source in an infinite medium [ 121 

Tc,(x,y) = 2 
I x ss q(x’, y’) eP,(r-l’) 

0 -a 

x Ko{P,[(x-x’)2+(~~-y’)2]‘,2} dy’dx’ (2) 

where 

l~2q”(xo,Yo) 
dx, Y) = ---- 

2 2 
(3) 

Here, q”(xo, y”) is the rate of internal heat generation 
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per unit volume at (x0, y”) and ki the thermal con- 
ductivity of body i. Since a semi-infinite body with 
insulated surface is being considered here for the T, 
effect (for body 2), equation (2) may be integrated by 
forcing the internal heat flux term to be symmetrical 
about the x-axis, namely, q(x, y) = q(x, -y). 

The boundary conditions for (i) an initially equal 
and uniform bulk temperature of the bodies prior 
to contact, (ii) insulated surfaces outside the contact 

region, (iii) continuity of temperatures at the contact 
region (perfect contact assumed) and (iv) con- 
servation of heat fluxes at the contact region are, 
respectively, 

T,(--co,.r) = T,(-co,y)+T,(-co,.r) = 0 (4) 

%(x,0) = $(x.o)+ $+x,0) = 0 

forx<O andx> 1 (5) 

T, (x, 0) - [T,(x, 0) + Td(x, 0)] = 0 for 0 < x < 1 

(6) 

- c$(x,O)+k. 
[ 
~(x.O)+~(x,O) 

1 
= 0 

where 

forO<x< 1 (7) 

k,=$ 
I 

It is noted that equations (4) and (5) are satisfied 
implicitly because of a proper choice of the Green’s 
functions in equations (1) and (2). From equations 
(6) and (7) with equation (1) and noting that 
~Td/dy~,,o = 0, a Fredholm integral equation of the 

first kind in the unknown aT, /@,= o is obtained 

~1Lf(41+ ~~~~f~~N = -aTd(x,O) r 

forO<x< 1 (9) 

where 

I,[f(x)] = 
S’ 

f(x’) eP,(“-“‘)Ko(Pilx-x’l) dx’ 
0 

(10) 

and 

f(x) = f$ (x, 0). (11) 

Thus, the heat flux distribution to body 1 at the con- 
tact region can be found by solving equation (9) and 
the resultant temperature fields in both bodies 
obtained from equations (1) and (2). An asymptotic 
solution for the heat flux distribution across the con- 
tact region, which applies when the Peclet numbers 
(P, and Pz) are large, is derived below. (In strip 
rolling, the Peclet numbers are over 4000.) This is 
followed by a discussion of the temperature fields in 
the bodies. 

3. ASYMPTOTIC SOLUTIONS 

To proceed further, a uniformly distributed heat 

source is considered, namely 

&,.Y) = 
( 

q. for 0 < x < 1 

0 forx<O andx> 1. (12) 

Thus, the integrals in equation (2) may be performed, 
giving 

Td (x, Y) = 

I 
2p x hzOe * ( 1 -exp(-2P2) 

p2 > 
foix < 0 

40 { x+ 
1 -exp[-2P,(l -x)] 

2P, 
1 forO<x< 1 

140 forx> 1. 

(13) 

3.1. Heatjux at the contact region 
Following Yuen’s approach [9], consider the region 

‘away’ from the leading and trailing edges of the con- 
tact such that E, < x < (l-&J, where 0 < E,, a2 << 1 
but P,E, and P,E? x 1 (i = 1,2). It can be shown, with 
f(x) written as 

f(x) = fo(x) +f, (x) +f* (x) + (14) 

where 

f;(x) =O[f;_,(x)] fori= 1,2,3 ,... (15) 

that the leading order term so(x) may be determined 
by solving the integral equation 

s J fo(x--4 
0 

u1;2du = :r~j?~x (16) 

where 

Do = -2 (:>‘;‘( 1 +$J”” (17) 

and 

P+. 
I 

(18) 

The solution of equation (16) is straight-forward, 
giving 

fo(x) = /Jox”2. (19) 

The integral equation for the next order term, f, (x), 
may be obtained by substituting equation (19) into 
equation (9) and making use of the identity (derived 
in Appendix A) 

5’ 
(1 -u) ‘I* e’“K,(Pu) du 

0 

s 

a 

+ (1-t u) ‘I2 e-P”Ko(Pu) du 
0 

= $ 3’2(: +P). (20) 
( > 
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It can be shown, after dropping smaller order terms. 
that 

where 

forO<.x< 1 (21) 

(22) 

Equation (21) has the same form as equation (9). 
Following the same procedure and making use of the 
results of Yuen [9], the solution for .f, (x) is 

f,(x) = A xI,2 

Hence, to the leading orders, we obtain the heat flux 
distribution to body 1 at the contact region 

3.2. Surface temperatures 
Further approximations to the integral of equation 

(1) need to be made to obtain the entire temperature 
fields of the bodies ; these will be discussed in Section 
3.3. However, the surface temperatures, which are of 
interest in most practical applications, can be derived 
readily as follows. From equation (l), the surface 
temperature of body i is given by 

x K,(P,]x-x’])dx’. (25) 

requires the results of the following integrals 

I, = 
s 

,&l)- “2e~P”Ko(Pu)du (26) 

n (--I 
1’2 

=7t 
2P 

erfc (2P) “’ (27) 

and 

IB = z (u-1)“2e-PUK0(P~)d~ (28) 

(29) 

=k & 3’2(~-2P)erfc(2P)‘-2+$e~‘Y 
0 

(30) 

where W,,,( ) and erfc( ) are the Whittaker and 
complementary error functions, respectively. The 
result of I, follows from Appendix C of ref. [9], the 

intermediate result of le (equation (29)) may be 
obtained from ref. [ 131 and the final result (equation 
(30)) from the properties of the Whittaker function 
(e.g. see ref. [ 141). For the region 0 < x < 1, the ident- 
ity of equation (20) is again made use of; and for the 

region x > 1, the leading order term can be derived 
by expanding the modified Bessel function asymptot- 
ically for large argument. After some mathematical 
manipulations, the final results for the surface tem- 
peratures of the bodies are 

n”2 

I4 ‘,2 
t2Pij3J2 Li -P,lxl)erfc(2P,lxl)‘~2+ 4P,e 

-2P,l.V 10 +(’ n ’ 2P, 
I,2 erfc(2P,,x,) I,2 forx < 0 

I’2 I>? 

T,(x, 0) = t, & ~(:+P,x)+<: forO<x< 1 

rl(+ tan’(x- l)- ‘s2- 

(31) 

where 5, = -/&,, 5; = --jr, t2 = ,6,/k, and 
The approach used by Yuen [9] will be adopted here. 
It can be shown, for the region x < 0, that evaluation 

4; = PI/k,. For regions ‘away’ from the leading and 
trailing edges of the contact region (i.e. for P,lxJ >-> 1 

of the leading order terms of T;(x, 0) of equation (25) and PiI 1 --xl >> 1), equations (31) can be further 
simplified 

for P,x << - 1 

T,(x, 0) zz and P[( 1 -x) >> 1 

&[xtan-’ (x-l))‘~2-(x-l)“2] forP,(x-1) >> 1. 

(32) 
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3.3. Temperaturejields (35) is given in Appendix B, and the integration of the 
The temperature field of body i, by substituting term involving 51 follows the results of Yuen [lo]. The 

equation (24) into equation (l), is final result is 

T&Y) = ; 
51 

&(x’) ‘I* + o”2 1 epJxpx) T((x,y) = 

x K,{P,[(x-x’)~+~~]“~} dx’. (33) + 4 5: erfc [2P,p sin2(: S)] ‘I’} for 0 < x < 1. (36) 

Approximations are now introduced to the above 
integral in the various regions to obtain closed-form 
expressions. Since the Peclet numbers are large, the 
temperature changes prior to the contact region are 
insignificant and will not be considered here. 

Within the contact region, equation (33) may be 
written in polar coordinates 

T,(x,Y) = ; 
I/P s [ er 

0 

t,(pu) ‘I* + ol’2 

1 
e-pp(u-cOso) 

x K,[P,p(~~-22ucos~+ l)“*]dU (34) 

where 

x = pcos0 and y = psine 

such that 

In the region of interest, ] y] << x, equation (36) can 
be simplified to 

T (x, Y) = 

for 0 < x < 1. (37) 

For the region far beyond the contact such that 
P, (x - 1) >> 1, the modified Bessel function in the inte- 
grand of equation (33) may be expanded for large 
argument and approximated in the region of interest 
(I y] K x) as illustrated in ref. [lo], and equation (33) 
then reduces to 

ci 
Yuen has shown [lo] that, since Pip is generally + U”2(1 +u) 

e-“a” du (38) 

large and ]0] << 1 in the region of interest, the inte- 
grand in equation (34) may be approximated, giving 

where 

PiY2 
%=2x. (39) 

Integration of the first term between the square 

xexp[-2P,psin*(~@/(l-u)]du. (35) brackets in equation (38) is given in Appendix C, and 
that for the second term follows the results of ref. 

The integration of the term involving & in equation [lo]. The temperature distribution beyond the contact 
region is thus obtained 

erfc (q!‘*) +erf (r],‘12) erfc 

2 -~~‘““-“[tan-‘(x-l)1’2+S2] --e I for 1 < x < 2 
7T 

(40) 

-xe-%SJ + 5; 
(3 

$ “2 [tan ’ (x-1)-‘12-e-V,] forx> 2 
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where S,. S2, S, and S4 are series defined as 

+ pYc- I)‘? 1 +4 [ 5.7 

h,(*Y- y 
1.3.5 

_ (2%)*(.x- 1)” + (2r1J3(x- 1)’ ? 3.5.7 I .3.5.7 + 

s 2 _ %L- 1)“2 
1.3 + [- 2r/;(x- I)?‘? 

3.5 

+ (2r#(X- I)‘;2 + 2&(X- 1)5’? 

1.3.5 I [ 5.7 

(2?/,)Q- 1)“’ + (2Q(.X- 1)“2 

I I 
- ~--11+ 5(X_ l)5.‘2 + 3(X- I)-/- 1 

and 

w. Y. I>. YUEN 

where 

1 
I 2 

crfc (yl, 1 +erf(n 
1’2 

‘,, ‘I 

) erfc .\‘_ , 

i ! 

2 
_ _-e 

s,= x 
?l,.r,(\- [‘[tan I (x-l) z+s2] 

(41) 

(42) 

(43) 

I I 
- 3(s_l)3’? + 5(x_~)5’2 + “’ (44) 1 

3.4. Thermalpenetrution 

The maximum temperature changes (induced by 
the heat flux at the contact region) near the subsurface 
of the bodies have important implications on the ther- 
mal damage and fatigue in the solids. At a depth y 
below the body surface, the maximum temperature 
change occurs at a location x,(y), which can be deter- 
mined from the solution of 

(45) 

It can be shown, when the Peclet numbers are high, 
that the temperature change reaches a maximum at a 
location beyond the contact region, hence Ti(x, y) is 
given by equation (38). On performing the differ- 
entiation and reducing the resulting expressions, it can 
be shown that equation (45) gives 

: 

for1 <xc2 

2 
alann (x-l))‘,‘*_ _em%S, for .X > 2. 

n 

(47) 

Once the location x, of the maximum temperature 
change is determined from the non-linear equation 
(46) the resultant maximum temperature T,,, can be 
obtained from equation (40). 

4. DISCUSSION 

4.1. Comparison with previous solutions 

The leading terms of the asymptotic solutions for 
the contact region derived in the previous section 
agree with those derived from a simplified thermal 
analysis of two semi-infinite bodies in contact [15] : 
the latter solutions are identical to (i) the first term of 
equation (24) for the heat flux distribution to body I, 

(ii) the first term of the second of equations (13) for 
the temperature gained by body 2 due to the internal 
heat generation, and (iii) the second of equations (32) 
and the first term of equation (37) for the surface tem- 
perature and temperature distribution in the bodies 
within the contact region (0 < x < l), respectively. 
Furthermore, the temperature variations prior to and 
beyond the contact region, which could not be 
obtained from the simplified analysis of the previous 

work [ 151, have been derived in this study. 
In order to establish the range of the Peclet numbers 

for the asymptotic solutions to be valid, they are com- 
pared with the results obtained from a numerical solu- 
tion [ 161. Figure 2(a) gives a comparison for the heat 
flux distribution to body 1 for various values of k, and 
P, with P, = IO. It can be seen that good agreement 
is obtained, with Pz reduced to as low as unity and k, 
ranging from 0. I to IO, except for regions very close 
to the trailing edge of the contact. Comparisons with 
other values of P, greater than 10 have also been 
made, and good agreement obtained in all cases. It is 
noted that the leading order term ,f”(.x) varies with 
.V ‘j* and has a weak singularity at the leading edge 
of the contact. It appears that the next order term 
after j”, (x), although not derived here, consists of a 
weak singularity at the trailing edge of the contact, as 
indicated by the numerical solution in Fig. 2(a) and 
observed in a previous study of a similar thermal 
system [9]. However. these discrepancies are not 
expected to produce significant errors in the tem- 
perature calculations since they span a very small 
region, especially when the Peclet numbers become 
high. 

A comparison for the surface temperature dis- 
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I ’ I ’ I ’ I 1 

2.0 /Pa==l:k,-10 

I I I I I I I , j 
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(a) Heat flux distribution to body 1. 
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(b) Surface tempero& distribution of body 1. 

1.2 

a 1.0 
d 
2 0.8 

+ 0.6 

2 0.4 

2 0.2 

0.0 
0 1 2 3 4 5 

x 
(c) Surface temperature distribution of body 2. 

FIG. 2. Comparison between the asymptotic and numerical 
solutions for (a) the heat flux distribution to body 1, (b) 
the surface temperature distribution of body 1, and (c) the 

surface temperature distribution of body 2. 

tributions in bodies 1 and 2 for P, = 10 are given in 

Figs. 2(b) and (c). respectively. In these comparisons, 
the temperatures have been normalized by the asymp- 
totic peak temperature change T,p for large Peclet 
numbers 

T,, = T,(l,O) = :S, (48) 

and 

T, ii T,(l, -co)+T,(l, -00) = 1. (49) 

It is observed that good agreement between the 
asymptotic and numerical solutions is obtained for 
the surface temperatures of bodies 1 and 2 when P2 
equals or exceeds 10. Calculations with values of P, 
exceeding 10 also produce favourable agreement, but 
the results are not included here in the interest of 
brevity. 

Before a comparison between the asymptotic and 
numerical solutions for the temperature distribution 
within the bodies is made, it is necessary to examine 
the numerical behaviour of the series S,, S,, S3 and 

Sq, which will be used to calculate the temperature 
distribution beyond the contact region. It is found, 
in agreement with a similar observation made in a 

previous study [lo], that although each series solution 
was derived within its region of validity, namely, for 
the regions 1 < x < 2 and x > 2, respectively, an over- 
lapping region (1.3 < x < 2), for which both solutions 
are valid, exists. On examination of the numerical 
results, it is found that the most efficient computation 
would be achieved if a cross-over point of x = 1.6 
(instead of x = 2) is chosen. In addition, it is observed 
that a 0.1% accuracy can be obtained with less than 

30 terms being retained in the series if they are summed 
in the order written. 

Figure 3 gives a comparison of the asymptotic solu- 
tion with the numerical solution for body 1 for regions 
within and beyond the contact with P, = P, = 10 and 
k, = 1. It can be seen that good agreement is obtained. 
Note that the temperature change varies approxi- 

mately linearly with .X within the contact region for 
positions very close to the body surfaces. With high 

Peclet numbers, the thermal gradients normal to the 
surfaces of the bodies are very high indeed. Outside 
the contact region, the surface temperatures again 
vary rapidly owing to the inward diffusion of the 
thermal energy driven by the high thermal gradients 
generated in the contact region. These are features 
typical of sliding solids in contact within a finite region 

and they have been discussed in detail in ref. [lo]. 
Calculations have also been performed for other 

values of k,, P, and P2, and the comparisons are 
favourable in all cases whenever P, and P2 exceed 10. 
However, those details are omitted here in the interest 
of brevity. 

It is concluded from the above comparisons that 

1.0 

fO.6 

’ 
z 

0.6 

d 0.4 
C 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.6 1.0 

x 
(a) Within the contact region. 

n0.6 
I-- 
\ 0.6 

a 
2 0.4 

+ 0.2 

(b) Beyond the contact region. 

FIG. 3. Comparison between the asymptotic and numerical 
solutions for the temperature distribution in body 1 

(P, = Pz = P, k, = 1, P, = 10 for numerical results). 
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the asymptotic solutions are valid when the Peclet 
numbers of both bodies equal or exceed 10, which 
covers most practical applications. 

4.2. Further simpl@cations 
In real-time process control, it is desirable to use 

expressions as simple. yet sufficiently accurate, as 

possible. While the heat flux distribution (equation 
(24)), the surface temperature distribution (equation 

(31) or (32) as appropriate), and the temperature dis- 

tribution within the contact region (equation (37)) 
are all relatively simple expressions, the temperature 
distribution beyond the contact, given by equation 
(40). involves several infinite series. However, it has 

been found, during the numerical calculations in the 
last section, that the terms involving {: are generally 

insignificant and only a few terms in the remaining 
series need to be retained to achieve reasonable accu- 
racy. Thus, the temperature expressions beyond the 
contact region may be simplified to 

T,(X:_Y) = 

2x “2 

5t Pi * (-...-I Xi’erfc(q!“) for 1 < (x- 1) < vi 

tion (51) or (52) respectively. The corresponding 
maximum temperatures arc shown in Fig. 4(c), with 
the full temperature expression of equation (40) used 
in the first approach and the approximated tem- 
perature expressions of equation (SO) used for the 
other two approaches. It can be seen that, indeed, 
the approximations are satisfactory for all intended 
purposes. 

4.3. Effect cfheatftux distribution 
It is clear from the above analysis that the tem- 

perature distribution in each sliding solid can be deter- 
mined once the heat flux distribution over the contact 
region is known, with an extra term from the internal 
heat source added if appropriate. For the case where 
the internal heat source is absent in the body. Blok 
[ 171 stated that when the speed of the moving body is 
high (more precisely, when the Peclet number is high 
aradwhen the heat flux distribution is largely uniform), 

5i 
~ -(x-l) 

(27rPj) ‘I2 i 
l/Z e-?&- 1) +xe-V,tan 

L 
tan-’ 

I 
+3,~~,e~~~ (x-l)-“‘- (~_1)‘!2 I L 1 
+$X$e-?, tan-‘@-1))““-------_-ii+ 

I 

(x- 1) ’ 3(x- 1)1’2 1 
+ $xtl: i tan-‘(x-l)-‘!*- 

1 1 1 
em72 -- (.X- 1)“2 + - 3(x- 1)3’2 5(x- 1)5’2 11 for vi 2 (x- 1). 

A comparison of these approximations with the full _ _ 
solution of equation (40) is shown in Fig. 4(a), from 
which it can be seen that reasonable accuracy is 
achieved, especially for the region Q > (X - 1). 

Similarly, the non-linear equation (46) for the 
evaluation of the thermal penetration may be sim- 
plified to 

~(s_1)“2erfc(,1,‘.2)_e--l:“i:- 1) = 0 

and 

forO<(x-1) “;:I?, (51) 

l- li-V, ___ -e-q/‘“- ‘1 = 0 
3(X- 1) 

for fli > (x- 1). (52) 

A comparison for the locations, x,, at which the 
maximum temperature change is reached for a speci- 
fied depth below the body surface, determined from 
three different approaches is shown in Fig. 4(b). The 
first approach adopts a searching technique to deter- 
mine x, from the full solution of equation (40); in 
the second and third approaches, x,,, is determined 
from the full equation (46) and the approximate equa- 

(50) 

the maximum temperature r, in the body (which 
should occur at the trailing edge of the contact on the 
body surface) is given by the general form 

* 
P (53) 

where qzv is the average heat intensity along the con- 
tact region and A is a “form factor’ which depends on 
the form of the heat flux distribution over the heat 
input region. Blok [17] further stated that A equals 
2’/lri:2 % 1.13 for a uniform heat ffux dist~bution and 
equals 1.11 for a semi-elliptical distribution, and A 
would not differ very much from these values for any 
‘fairly smooth’ heat flux distribution. 

Of the numerous heat flux distributions which may 
be considered, those arising from the following three 
conditions are of practical interest when examining 
sliding solids which move in the same direction 

(i) where heat energy, normally frictional in 
nature, is generated along the contact region ; 

(ii) where heat transfer across the contact region 
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(c) Aasoclated maximum temperatures. 

FIG. 4. Comparison of the approximated expressions with 
the full series solution for body 1 for (a) the temperature 
distribution beyond the contact region, (b) and (c) the 

thermal penetration. 

is induced by a difference in the bulk temperatures of 
the solids prior to the contact ; and 

(iii) where heat energy, normally as a result of elas- 
tic and/or plastic deformation, is generated in one or 
both solids. 

For ease of reference, these three cases will be called 
the ‘friction effect’, ‘bulk temperature difference effect’ 
and ‘deformation effect’, respectively. Based on an 
approximate analysis considering the average tem- 
perature over the contact region, Barber [ 181 provided 
an estimate of the amount of heat transferred to each 
body in each of these three cases. Yuen studied these 
with a more precise analysis and presented results for 
high Peclet numbers : the first two cases were discussed 
in refs. [9-l 1] and the last case discussed in this paper. 
In particular, the heat flux distributions to the solids 
for the three cases are found, in approximate terms, 
to be uniform, to vary with X- ‘12 and with x”‘, respec- 
tively. It is straight-forward to show, from refs. [9-l 1] 
and the results in this paper, that the average heat 
fluxes transferred to a body, say, body 1, over the 
contact region are given by 

k,P;” 
(d’)l = k,Pf,‘+k,P@. (54) 

l/2 lk,Pf’2 

P;‘2(k,P;/2+k2P;/2)qd ’ (56) 

where (q&)i is the heat flux for case i, To the bulk 
temperature difference between the two bodies, qy the 
rate of frictional heat generated per unit area along 
the contact region, and qz is the rate of heat generated 
per unit volume within the contact region in body 2. 
Further, it can be shown that the form factors for the 
three cases are 2/a’j2, $c”~ and 3n’j2/4, respectively. 
Taking the first case where the heat flux distribution 
is uniform as the reference, the form factors for the 
second and third cases are 21.5 lower and 17.8% 
higher, respectively. These differences are far larger 
than the value suggested by Blok [17] although the 
heat flux distributions for all cases considered are 
‘fairly smooth’. 

The above results are not unexpected and might be 
explained as follows. Since we are considering differ- 
ent cases with the same total heat flux applied to the 
body, a monotonically decreasing heat flux dis- 
tribution (induced by the bulk temperature difference 
effect : case 2) as compared to a uniform distribution, 
would cause more heat to diffuse into the body due 
to the high heat flux during the early part of the 
contact, hence reducing the peak temperature reached 
on the body surface at the trailing edge of the contact. 
The reverse argument is true for a monotonically 
increasing heat flux distribution (induced by the 
deformation effect: case 3). Hence, of all possible 
heat flux distributions, it appears that a monotonically 
decreasing heat flux distribution would result in a 
lower overall maximum temperature change in the 
body. On the other hand, the thermal penetrations for 
all three cases are similar for locations far below the 
surface, as shown in Fig. 5. It can be seen from the 
figure that the maximum temperature reached in the 
body at a distance y below the body surface does not 
vary significantly with the heat flux distribution in the 
heat input region when P ‘j2y exceeds 1. 

It is often desirable to obtain a quick estimate of 
the thermal penetration in the body. Approximate 

1.4 I I I I I 
- deformation affect 

1.2 f,f,,,, effect 
bulk temperature difference effect 

L - z fi 

1.0 

0.8 

5 0.6 

5 0.4 

FIG. 5. Comparison between the empirically derived maxi- 
mum temperatures with those from the asymptotic solutions 

for three heat flux distributions. 
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expressions may be fitted to the curves of Fig. 5 ; that 
for the friction effect has been obtained previously 

[I 11 

-0.0446(P’~“~)“+0.00208(P’~“4’)J] 

for 0 < P’+ < 8. (57) 

A suitable expression for the bulk temperature differ- 
ence effect is 

xexp~-l.083~‘~z~+0.1531(~~~~~)2 

-O.OOS(P ““,r)‘] for 0 < P”‘y d 8 (58) 

and that for the deformation effect is 

for 0 < P”‘y < 8.(.59) 

Tn equations (57)-(59), T, z T,(y) is the peak tem- 
perature (change) reached at a distance y”(y = y”/1) 
below the body surface. The results from the fitted 
expressions are also shown in Fig. 5, from which it can 
be seen that excellent agreement has been obtained. 

5. CONCLUSION 

The heat transfer between sliding solids with inter- 
nal heat sources within the contact region is examined 
in this paper. Both the heat flux distribution at the 
contact and temperature fields in the solids have been 
determined from an asymptotic analysis for large 
Peclet numbers. Comparison with a numerical solu- 
tion indicates that the asymptotic solutions are valid 
for Peclet numbers equal to or exceeding 10. 
Expressions to characterize the thermal penetration 
into the bodies have also been derived. Simplified 
expressions for the temperature fields and maximum 
temperatures in the bodies have been obtained. 

The thermal penetration obtained here has been 
compared with those resulting from two other heat 
flux distributions of practical significance. It has been 
found that, in general, a monotonically decreasing 
heat flux distribution produces a lower maximum tem- 
perature on the body surface as compared to a 
monotonicalIy increasing heat flux dist~bution. The 
difference observed for the cases considered amounts 
to 50%. It has also been found that the thermal pen- 
etration is independent of the heat flux distribution at 
a sufficient depth below the body surface, namely, 
when P”‘y is greater than unity. Approximate 
expressions have also been obtained for a quick evalu- 
ation of the thermal penetration into the body for the 
three different heat flux distributions examined. 

This work, together with those published previously 
[9--l 11, forms a complete anaiysis of the heat transfer 
in the roll gap of the strip rolling process, and also 
finds application in other similar industrial processes 
such as grinding and machining. 
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APPENDICES Appendix B. Evaluation of integral I, defined in equation 

Appendix A. Evaluation of integral I, defined in equation fB.1) 

(A.11 
Let 

Let 

I, = 
s 

‘(I-u)‘lze”KO(Pu)du 
0 

r= 

r/2 
e-P/Cl-ul du 

(B.1) 

where p > 0. 
With a substitution of w = 1 -u, I, may be evaluated [13] 

+ J (l+u)l’*e-P”K,,(Pu)du (A.l) 
0 

where P > 0. With eP”KV(Pu) expressed in terms of the 
Meijer’s G-function, GF”( ) (e.g. see ref. [19]) : 

eP”K,(Pu) = cos$G:;(2Pu],!?V) (A.2) 

both integrals in equation (A.l), with K,(Pu) replaced by 
the modified Bessel function of a general order, K,(Pu), may 
be evaluated [19], giving 

S’ 
(1 -u) ‘!’ e”K,(Pu) du 

0 

= I,cos (vr~)G::(2P]$?;_,,~) (A.3) 

s x(1+u)“2e-PUKV(Pu)du= -~G~~(2P]‘?~~~~,,_,). 
II 

(A.4) 

Further, with the Meijer’s G-function expressed [19] in terms 
of the generalized hypergeometric series, .F,,,( ), it can be 
shown that, after some lengthy mathematical manipulations 

.I, = 
s 

’ (1 -~)‘/~e~“K~(Pu)du 
0 

+ 
s 

x(l+u)“2e-hKV(Pu)du 
0 

I-(2v)l-(l-v) 1 

+ 2(-: -v)(f -v) (2P)’ 

x,F,(l-v,:-v;l-2v,f-v;2P)[cos(vn)-l] 

1 
-:r(r+l)r(-v+;)f-(-i) (2p)‘,2 

X $>(_f, - 1; -f-v, -f +v;2P) 

where r( ) is the gamma function. 
Since 

and 

iii? [cos (Vrc) - I] = - f (vx) * 

thus 

= g 3’Z(i+P). 
0 

(B.2) 

=P - ‘I4 e-‘i2r($) w_ 5,4.,,4(p). (B.3) 

Using the properties of the Whittaker function [14], it can 
be shown that 

W_544_,14(p) = 4n”zp”4eP’2i2erfc (p”‘). (B.4) 

Hence 

Ih = 2ni*erfc(p”*). (B.5) 

Appendix C. Evaluation of integral I, defined irl equation 
IC.1) 

Let 

s I/G- 0 uw 
I, = (l+U)Ze-))“du (C.1) 

II 

wheren=fPy’/x>Oandx> 1. 
When 1 < x < 2, the integral I, may be evaluated between 

the limits from 0 to co, and then from (x-l)-’ to co. Thus 

where 

I, = I,, -I,1 (C.2) 

s cu uI:2 

ICI = 
0 (l+u)2 

ee”“du (C.3) 

= -((n~)‘!*+(~+t7)~e~erfc(n”~) (C.4) 
(A.5) and 

s 

P 

I,, = 

ul0 

I/,x- I) (1 +uY 
e-‘” du (C.5) 

The term (1 + u) -’ in I,, may be expanded for u > 1 (since 
1 < x < 2) and the resultant series integrated, giving 

I,, =~~{(-I,m(m+l)~,~~_,~u~m~3/2e-0udu} (C.6) 

=$0{(-t)m(m+*)r7m+r”[r(-m-i) 

(A.@ 

( 

1 1 
--Y -m-2,,I_l >I> (C.7) 

where y( ) is the incomplete gamma function. 

(A.7) 
After lengthy manipulations and reductions 

Ic2 = - (7-c~) ‘I2 erf 2 
( > 

1:2 

(A.8) 

1 7r )I2 
Ia=?‘_y”=; 2p 

0 
#*(-f, -1; -4, --f;2P) 

(A.9) 

( 1 
5 

I 2 
-7c(f +n) eV erf(n”*) erf 

+2e-“/(x- 1) (x - 1) ‘I2 

2x 
-ftan’(x-I)“* 

(A.lO) (C.8) 
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Combining these results, the integral I, for the region I, may be expanded. giving 
I < s < 2 is obtained 

I ,I_ I, ‘I”‘U!“t I 2 
~~- up, du 

!??!(I +u)- 
(C.10) 

The above integral can be integrated. The result is, after 
some manipulations and reductions 

(C.11) 

(C.9) When the series of equations (C.9) and (C. 11) are written 
For the region n > 2, the exponential term in the integral out, the results of equation (40) are readily obtained. 


